Introduction to Kotlin

Christian Konersmann, Finn Paul Lippok, Paul Lukas

RWTH Aachen University, Aachen, Germany
{christian.konersmann,finn.lippok,paul.lukas}@rwth-aachen.de

Proseminar: Advanced Programming Concepts
Organiser: Prof. Dr. Jiirgen Giesl
Supervisor: Jan-Christoph Kassing

May 4, 2025

Abstract

This paper introduces Kotlin, a statically typed, object-oriented programming lan-
guage designed to be fully interoperable with Java. It focuses on Kotlin’s concise syn-
tax, advanced features such as null safety, and extensive multiplatform development
capability. These features make Kotlin a modern and powerful programming language
that offers significant improvements over Java.

1 Introduction

Kotlin is a modern programming language developed by JetBrains. It is designed as a safer
and more concise alternative to Java, offering full interoperability with Java and the JVM.
This allows developers to leverage existing Java libraries and frameworks while benefiting
from Kotlin’s modern features. Its clean and concise syntax has made it increasingly popu-
lar, particularly in Android development. In fact, Google announced Kotlin as its preferred
language for Android development in 2019 [7]. Beyond Android, Kotlin supports multi-
platform development, enabling developers to build applications for the server, desktop,
web, and i0S from a shared codebase [11]. This paper presents an overview of Kotlin’s
elegant syntax and highlights key language features that demonstrate its advantages over
Java. It assumes a basic understanding of Java and begins by examining core syntactic
differences between Kotlin and Java, followed by an introduction to concepts such as null
safety and seamless Java interoperability. The paper concludes with a discussion of Kotlin’s
multiplatform capabilities, focusing on its application in Android development.

2 Basic Syntax

This section covers the basic syntax of Kotlin and highlights its differences compared to
Java. The goal is to provide a concise overview focused on the most important distinctions.

2.1 Program Entry Point and Method Declaration

The main method is the entry point of any Java or Kotlin program [13]. Java enforces
object-oriented programming, thus requiring the main method to be declared within a

oW N

0N

N

N

class. For the main method to be directly executable, it must be public and static,' as
shown below:

Java main method

public class Main {
public static void main([1 args) {
System.out.println("Hello,_ World!");
}
3

Kotlin, on the other hand, does not require methods to be declared inside a class,
allowing for a more functional programming style with top-level functions. These top-level
functions can be called directly without the need to instantiate a class [36], functioning
similarly to static methods in Java,” but without an explicit class affiliation. Kotlin further
reduces boilerplate by having public as the default visibility [57] and allowing the main
method to omit arguments passed as an array [13]. Also, semicolons are optional, as line
breaks are sufficient to indicate the end of a statement. Kotlin also introduces the fun
keyword for defining functions [14], resulting in a concise and readable syntax, as shown
here:

Kotlin main method

fun main() {
println("Hello, World!")
}

2.2 Variable Declaration

Variables in Kotlin are declared using the keyword val for immutable variables or var for
mutable variables [15], similar to Java’s final and non-final variables. The type is declared
after the variable name, separated by a colon:

Java data types

final name = "John_ Doe";
int age = 42;

Kotlin data types

val name:
var age: = 42

"John Doe"

2.3 Type Inference

Kotlin supports type inference, allowing the compiler to infer a variable’s type based on
its initializer or usage [3]. Unlike many functional programming languages such as Haskell,
which rely on unification for type inference, Kotlin uses a different approach called con-
straint solving [2]. This approach allows for type inference with subtyping. However, a
detailed discussion of its internal workings is out of scope for this paper.

'If the main method were non-static, it would require an instance of the class before it could be run,
leading to a circular dependency.

2When compiling Kotlin to Java bytecode, top-level functions are compiled as static methods in a class
named after the file.

w N

1
2
3

!

5

val name = "John Doe" // type is inferred as String
var age = 42 // type ts inferred as Int

2.4 Return Type Declaration

Similar to variable declaration (), a method’s return type is declared after the
method name and parameters, separated by a colon [14]. The equivalent of void in Java
is Unit in Kotlin [1, 44], which can be omitted if no value is returned.

Java method declaration

public int add(int a, int b) {
return a + b;

}
Kotlin method declaration
fun add(a: , b:) {
return a + b
}

2.5 Everything is an Object

In Kotlin, there are no primitive types.” All types are objects and inherit from the Any
class [16]. This approach creates a more consistent object-oriented programming model
and eliminates the need for wrapper classes.

Java Integer Wrapper

.valueOf (42) .hashCode () ;

Kotlin direct usage of Int

42 .hashCode ()

Furthermore, functions in Kotlin are also treated as objects [45], enabling higher-order
functions and functional programming paradigms. As a result, functions can be passed as
arguments, returned from other functions, and assigned to variables.

3 Classes

In both Java and Kotlin, classes are declared using the class keyword [30] and can contain
attributes, methods, and constructors. In the example below, we declare a class to represent
a salesperson:

Java Class Declaration

public class SalesPerson {
private final name ;
private final int commissionRate;
private double salesVolume;

3Certain types may be optimized to use Java primitives at runtime for performance reasons.

¥)

public SalesPerson (name, int commissionRate, double
transferAmount) {

this.name = name;
this.commissionRate = commissionRate;
this.salesVolume = transferAmount;

}
}

Kotlin improves upon Java by allowing the constructor to be declared directly within the
class definition [31]. As a reminder, the default visibility in Kotlin is public, and classes
are also final by default, meaning they cannot be inherited from unless explicitly declared
open. Kotlin also permits the declaration of constructor parameters (as properties) using
val or var, including visibility modifiers [31], resembling the concise syntax found in Java
records:

Kotlin Class Declaration

class SalesPerson(val name: , private val commissionRate:
, transferAmount: = 0.0) {
var salesVolume: = transferAmount
X

In this example, name and commissionRate become properties of the class, while trans-
ferAmount is a constructor parameter used to initialize salesVolume. It is still possible to
declare attributes outside the constructor. Additionally, Kotlin allows default parame-
ter values in constructors and functions, a feature that would otherwise require method
overloading in Java.

3.1 Properties

Properties in Kotlin facilitate concise declaration of getters and setters, including their
visibility, directly beside the corresponding attribute [53, 54]. Unlike Java, accessing a
property in Kotlin via dot notation will internally call the corresponding getter or setter
method, ensuring a consistent syntax. If only the visibility needs to be restricted, the
property can be declared as shown below:

Private setter

var salesVolume: = transferAmount
private set

For more complex logic, custom getters and setters can be defined inline [51]. The field
keyword refers to the underlying attribute:

Custom accessors

var salesVolume: = transferAmount
private set(value) {
if (value < 0)
throw IllegalArgumentException("SV must_ be positive")
field = value

3

Kotlin also supports computed properties, which do not store a value but compute it
on access via a custom getter [54]. This approach mirrors writing a getter method in Java
without a backing field:

N

w N e

Computed Property

val commission:
get () = salesVolume * commissionRate

4 String Interpolation

In Java, variables are typically formatted into strings using the String.format() method
or by concatenation with the + operator. Kotlin introduces a more readable mechanism
called string interpolation |55], allowing variables and expressions to be directly embedded
within a string by prefixing them with a $ sign, and enclosing expressions in curly braces:

String Interpolation

fun printSalesPerson() {
println ("Name: $name, Sales_ in ,USD: ${salesVolume *,1.2}")

3

5 Extension Functions

Extension functions enable the declaration of new methods for a class without modifying
the class’s source code [35]. This would would require creating a subclass in Java, which is
not always possible, especially when adding utility methods to existing classes you cannot
modify, such as third-party libraries. An alternative would be to create a utility class with
static methods, but this approach is less elegant. Data encapsulation remains intact, as
extension functions can only access the public members of the class.

Extension Function

// Extension function outside of the class
fun SalesPerson.print () {
println ("$name: $salesVolume sold")

}

fun main() {
val carl = SalesPerson("Carl", 1200)
carl.print () // Calling the eztension function

}

6 Null Safety

Whenever a method or attribute is accessed on a null reference in Java, a NullPointer
Exception (NPE) is thrown. Kotlin eliminates this risk with a null safety system that dis-
tinguishes between nullable and non-nullable types [16, 17]. By default, all types in Kotlin
are non-nullable, meaning variables cannot hold a null value unless explicitly declared with
a question mark. Kotlin enforces this distinction at compile time, requiring developers to
handle nullable types explicitly. At runtime, both types are treated the same.

var a: = "a,isynon-nullable"
var b: ? = "byisgynullable"

N N

AW N

6.1 Null Safety Operators

When working with nullable types, you cannot directly access properties or methods, be-
cause the reference could be null, potentially causing an NPE. In Java, this is typically
handled with an if statement, as shown in the following example:

private final SalesPerson supervisor;

public void printSupervisor () {
if (supervisor == null) System.out.println("null");
else System.out.println(supervisor.name) ;

3

This approach is also available in Kotlin, where checking for a null value in an if
statement automatically casts the type to a non-nullable type within the scope of the
statement [15]." However, Kotlin provides convenient shortcuts for handling nullable types
by using Null safety operators.

6.1.1 Safe Call Operator

The safe call operator 7. allows you to access properties or methods of an object only if it
is non-null, thereby reducing the need for explicit null checks [19]. If the object is null, the
expression safely evaluates to null, avoiding an NPE. Otherwise, it evaluates as expected,
granting access to the object’s attributes or methods. Essentially, this operator enhances
the standard dot notation by incorporating null safety.

val supervisor: SalesPerson? = null
fun printSupervisor () {
println(supervisor?.name)

3

Multiple safe calls can be chained [19], and if any segment is null, the entire chain
evaluates to null. Furthermore, safe calls can also be used on the left side of an assignment.
If the safe call operator evaluates to null, the assignment will be skipped.

// Chatned safe call operators

var volume: ? = supervisor?.supervisor?.salesVolume
// Assignment with a chained operator

supervisor?. supervisor?.salesVolume = 0.0

6.1.2 Elvis Operator

The Elvis operator 7: is an enhanced version of the safe call operator, offering a more
concise way to handle null values. If the expression on the left side evaluates to null, it
returns a default value specified to the right side of ?: [50]:

fun printSupervisor () {
println (supervisor?.name ?7: "No,supervisor")

}

When compiling to Java, both the safe call operator and the Elvis operator are treated
by the compiler as if statements. These operators simply make the code significantly
shorter and easier to read, therefore increasing the maintainability as well.

4This feature is known as smart casting, where the compiler automatically casts the variable to a more
specific type when it can guarantee the safety of the cast.

N

6.1.3 Not-Null Assertion Operator

The not-null assertion operator (!!) converts a nullable type to a non-nullable type,
instructing the compiler to treat the value as non-null [51]. However, if the value is actually
null, a NullPointerException will be thrown. This operator contradicts the concept of
null safety and should only be used when the programmer is certain that the value cannot
be null, but the compiler is unable to guarantee it.

Usage of the not-null assertion

var possiblyNull: 7?7 = null
var b: = possiblyNull!!

6.2 Nullable Receiver

Nullable receivers refer to extension functions (Sect. 5) that can be called on nullable
objects [52]. A normal extension function cannot be called on a nullable type, as the
compiler cannot guarantee that the object is not null. However, it is possible to define
an extension function that can be called on nullable types by implementing a so-called
nullable receiver, which is indicated by a question mark after the class name in the method
declaration. By handling the null case within the method itself, the method remains
accessible even if the object is null. The following example demonstrates how to define
and properly use an extension function with a nullable receiver type.

Usage of an extension function

// define the extension function

fun SalesPerson?.print () {
if (this == null) return println("This_ person,does not exist.")
return println("$name: $salesVolume sold")

}

// use the exztension function

var sales: SalesPerson? = null

sales.print() // This person does not exztist.

sales = SalesPerson("Carl", 1200)

sales.print() // Carl: 0.0 sold

7 Interoperability

This chapter focuses on interoperability between Java and Kotlin. In this context, inter-
operability refers to the seamless compatibility between the two languages. Kotlin was
designed to integrate smoothly with Java code and vice versa, making it easy to use both
within the same project.

7.1 Call Java in Kotlin

Everything written in Java is accessible in Kotlin [17], making interoperability especially
useful when working with one of the countless Java libraries, eliminating the need to
rewrite a library with the same functionality specifically for Kotlin. This applies to both
the official Java standard libraries and more specialized external libraries. Additionally,
interoperability makes it much easier to migrate existing Java projects to Kotlin, as they do
not need to be completely rewritten. This once again shows that Kotlin is a well-thought-
out language designed to serve as an improvement over Java.

N N

N

7.1.1 Create and Access Objects

To illustrate how Java code can be accessed in a Kotlin project, consider the following
example of a salesperson class that stores basic information and provides getters and setters.

Example Java class

public class SalesPerson {
private final name ;
private double salesVolume;

public SalesPerson (name , salesVolume) {

this.name = name;

this.salesVolume = salesVolume;
}
public getName () { return name; }
public getSalesVolume () { return salesVolume; }
public void setSalesVolume (salesVolume) {

this.salesVolume = salesVolume; 1}
}

If we want to access this class, we can use the familiar Kotlin syntax [17] to instantiate

the object and access its properties. There is no syntactical difference between accessing a
Java class and a Kotlin class, since Java methods following Java’s conventions for getters
and setters are converted [18] into so-called synthetic properties [19]. These can be accessed
using Kotlin’s property syntax. If the getters and setters do not follow Java conventions,
they can still be accessed as regular methods.

Access a SalesPerson instance in Kotlin

var carl = SalesPerson("Carl Mueller", 4500.0)
println(carl.name) // prints ’Carl Mueller’
carl.salesVolume = 4600.0 // sets salesVolume to 4600.0
carl.setSalesVolume (4600.0) // alternatively to the abowve

Kotlin detects that the name field in the Java class is final, therefore only a getter
method will be created. If the field had only a setter, the method would not be converted
into a synthetic property, as Kotlin does not support set-only properties |19].

7.1.2 Mapped types

By default, when instances of a Java class are used in Kotlin, they are loaded as Java
objects. However, some Java types have a corresponding Kotlin counterpart, these objects
are automatically mapped to their equivalent Kotlin type [20]. For example, java.lang.
Integer is converted to kotlin.Int? because Java wrapper objects can be null. This
applies to all Java wrapper classes and some important types, such as java.lang.0Object,
which is mapped to kotlin.Any!’. However, all Java primitive types are mapped to their
non-nullable Kotlin counterparts, as primitive types cannot be null in Java. For instance,
Java’s int is converted to kotlin.Int. Additionally, collections like Lists, Maps and
Arrays are also converted. For a exhaustive list of all mapped types, consult the official
documentation [20]. Java’s return type void is replaced by Kotlin’s Unit type.

5The exclamation mark indicates that this is a platform type. More on this in the next chapter.

N

w N

7.1.3 Null Safety with Java

Since Java does not distinguish between nullable and non-nullable types, any object re-
turned from Java code can be null. This contradicts Kotlin’s strict null safety concept
and would make working with Java objects impractical. To address this, Kotlin introduces
platform types for objects created through Java code. If a Java type does not have a direct
Kotlin equivalent, as is the case with most Java types, the compiler assigns it a platform
type, which is non-denotable [21]. This means we cannot explicitly declare this type as
we do with nullable types using a question mark”. With platform types, Kotlin relaxes
its strict null safety rules, making their handling similar to Java. However, this increases
the risk of NullPointerExceptions. To demonstrate how this can be used in practice, the
previously introduced Java salesperson class has been extended with the following method:

public static List<SalesPerson> createlList () {
List<SalesPerson> list = new ArrayList<>();
list.add (new SalesPerson("Carl", 4200.0));
list.add(null);
return list;

}

If we access this method through Kotlin, we get the List containing the two Elements
created in Java. Since both objects are created in Java and could be null, they are assigned
the platform type, thus the developer can decide if the variable should be nullable or non-
nullable.

val list = SalesPerson.createlList ()
var nullableltem: SalesPerson? = list[1]
val item: SalesPerson = list [0]

println(item.name) // allowed but would throw NPE

If the type is set to non-nullable but the object is actually null, attempting to access it
will result in a NullPointerException, as shown above. Therefore, using nullable types is
generally safer.

Some Java compilers use annotations [23] to specify whether a value is nullable or non-
nullable, such as JetBrains’ @Nullable or @NotNull annotation [$]. If these annotations are
present in the Java code, the compiler assigns the corresponding nullable or non-nullable
Kotlin type to the variable instead of a platform type. For example, if a method in the
salesperson class returns a string annotated with @NotNull, the variable would be assigned
a non-nullable type instead of a platform type:

public static @NotNull getString() { return "Notynull"; }

val str: = SalesPerson.getString() // non-nullable type

7.1.4 Java Arrays in Kotlin

In Java, arrays of primitive types can be used to achieve better performance, as they avoid
the overhead associated with objects. Kotlin prohibits the direct use of primitive arrays
but provides specialized classes for each primitive type instead [24|. For example, Java’s
int [] corresponds to Kotlin’s IntArray. These classes compile down to actual primitive
arrays to minimize object overhead.

5When the compiler needs to report a type-related error, it uses an exclamation mark to indicate the
platform type [22].

N N

w N

Let’s assume we have a function in Java that requires a primitive array:

public static void takeArray(int[] array) { ... }

In order to call this function from Kotlin without unnecessary boxing, we should use
intArray0f () instead of array0f (). This ensures that the array compiles down to Java’s
int [], avoiding the overhead of boxed Integer objects. Even in for loops, the Kotlin com-
piler optimizes iteration over primitive arrays, ensuring that no iterator is created [24]|. This
results in significant performance improvements compared to iterating over an Array<Int>,
which would involve additional function calls and object overhead.

var array: IntArray = intArray0f (1, 2, 3)

takeArray (array) // passes int[] to Java function

for (i in array.indices) // no iterator created
println(array[i]) // no calls to Array’s get() or set()

7.2 Call Kotlin in Java

Just as Kotlin can create instances of Java classes, Java can also create and use instances
of Kotlin classes [25].

7.2.1 Kotlin Properties in Java

Kotlin properties cannot be directly accessed from Java, and must therefore be compiled
into private fields, along with their corresponding getter and setter methods [26]. However,
if the Kotlin property is final, no setter method will be created. For example, consider this
simple property in the salesperson class:

var name:

This will compile to the following components in Java:

private name ;
public getName () { return name; }
public void setName (name) { this.name = name; }

The Kotlin compiler will preserve restricted visibility of getters and setters when generating
the corresponding Java methods.

7.2.2 Kotlin’s Null Safety in Java

If a public Kotlin function with a non-nullable parameter is called from Java, a nullable
value can be passed to this function from Java. To retain null safety, Kotlin generates checks
for those functions and throws a NullPointerException if the value is indeed null [27].

7.2.3 Instance Fields

In Java, it is possible to access public attributes without using getter and setter methods.
This kind of direct access is prohibited in Kotlin in order to maintain code integrity.
However, we can add the @JvmField annotation before our property to make it accessible
in Java through dot notation [28]. The field will have the same visibility as the property
in Kotlin. This example demonstrates how to use the annotation.

class SalesPerson (var name:) {}

10

AW N

public void example () {
SalesPerson person = new SalesPerson("Carl", 0.0);
System.out.println(person.name); // prints ’Carl’

3

Functions in companion or named objects can be marked as static to be accessed in
Java using the same annotation [29], though this topic is beyond the scope of this paper.

8 Multiplatform Development

Kotlin can be compiled not only for the JVM [37] but also into native binaries [13], remov-
ing the need for a virtual machine as required by Java. This makes Kotlin suitable for use
in embedded systems, where the overhead of running a virtual machine is impractical. In
addition to Java, Kotlin is also interoperable with C [39] as well as Swift /Objective-C [10]
and can be compiled to pure JavaScript [12] or WebAssembly [38]. Because Kotlin can
be compiled to multiple targets, it is well suited for multiplatform development. To fur-
ther simplify the process of writing code for multiple applications across various platforms,
Kotlin offers a hierarchical project structure [56, 41]. This structure allows the definition
of a shared codebase that can be reused across platform-specific subprojects. Each sub-
project can integrate this shared code with its platform-specific libraries, improving code
maintainability and minimizing redundancy.

Leveraging Kotlin’s Multiplatform programming support, you can develop applications
for servers, desktop, web, and mobile [11], making it a key advantage of the Kotlin pro-
gramming language.

9 Android

This section focuses on the benefits Kotlin offers in the Android environment, not only
through the language itself but also through Kotlin-based tools for Android.

9.1 Jetpack Compose

Jetpack Compose is a Kotlin-based UI ” toolkit that simplifies Android UI development.
Unlike XML, the traditional method for designing Android Uls, it can reduce required
code by up to 50%. While it may slightly increase APK size and build time, the gains
in productivity and maintainability far outweigh these downsides [10]. Compose improves
readability and handles Ul updates automatically based on state changes, so there is no
need to manually update views or manage the states [11]. Jetpack Compose also integrates
logic seamlessly. Unlike XML, where logic must be handled separately, Compose keeps
everything unified [12]. All UI functions must be annotated with @Composable, which
informs the compiler to treat them as Ul elements that react to state. Without it, using
elements like Text () would cause a compiler error |9].

9.2 Android KTX

Android KTX is a collection of Kotlin-friendly libraries that build on top of the existing
Android APIs, enhancing the development process by providing Kotlin-friendly APIs, such
as Coroutines [4].

"User Interface. This is what we see when we open up an App

11

9.3 Coroutines

Consider an app that displays a salesperson’s live sales numbers. To keep the data updated,
the app needs to fetch new sales data every second. Performing this task on the main
thread” would block the app from responding to user interactions or updating the UI while
waiting for the server’s response, potentially causing it to become unresponsive. Therefore,
Android prohibits such I/O calls on the UI thread [5].

To address this, multithreading is used to distribute tasks across multiple threads.
This allows the app to fetch data for multiple salespeople simultaneously, improving re-
sponsiveness and performance. Without multithreading, the app would process requests
sequentially, leading to delays and a poor user experience. However, traditional threads
consume significant memory, limiting the number of threads that can run at once.

Kotlin addresses this using coroutines, which are lightweight, more readable, and signif-
icantly more memory-efficient than Java threads [32]. Coroutines enable the management
of thousands of concurrent tasks without overwhelming the system or causing crashes by
sharing threads. When one coroutine pauses (e.g., when waiting for a response), another
one resumes execution on the same thread. This avoids the expensive context switching
required by OS-level” threads. In cases where a coroutine runs for an extended period
without pausing, Kotlin may create additional threads as needed [33].

Kotlin uses thread pools, each optimized for different tasks. The Default pool, typi-
cally matching the number of CPU cores, handles computational tasks (e.g., calculating
a salesperson’s monthly revenue). The IO pool, which can hold up to 64 threads by de-
fault, is ideal for operations that involve waiting, such as downloading files or making API
calls, since these tasks benefit from coroutine suspension. The Main pool contains a single
thread, the main/UI thread, which is responsible for updating the interface. While An-
droid already provides this thread, Kotlin wraps it to manage access and prevent blocking
operations, ensuring the app remains responsive [34].

Coroutines are especially helpful in mobile apps, where devices are resource-limited and
often rely on frequent network operations. Their lightweight design makes them a great
fit for these conditions. On Android, Kotlin offers helpful tools like 1ifecycleScope (],
which automatically cancels coroutines when their associated activity is destroyed. This
helps prevent memory leaks and keeps the app running efficiently.

10 Conclusion

Kotlin is a modern programming language that offers a concise syntax, improved class
structures, and innovative features such as null safety. Its seamless interoperability with
Java makes it a great choice for projects integrating with existing codebases and libraries.
Kotlin’s support for multiplatform development, particularly in Android, establishes it as
a powerful option for cross-platform development.

While this paper provides a solid foundation, it only scratches the surface of Kotlin’s
capabilities. Advanced features such as smart casts, delegation, and destructuring dec-
larations further enhance Kotlin’s appeal. By also embracing functional programming
paradigms inspired by languages like Haskell, Kotlin enables developers to write cleaner
and more maintainable code while still benefiting from its object-oriented capabilities.

These features, combined with its modern design and developer-friendly syntax, make
Kotlin a powerful alternative to Java and a compelling choice for developers.

8Threads are independent subprocesses that can run in parallel.
90Operating System

12

References

1]

2]

3]

4]
[5]

(6]

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

Marat Akhin and Mikhail Belyaev. Built-in types and their semantics. Kotlin. Unit.
Kotlin specification. JetBrains. URL: https://kotlinlang.org/spec/built-in-
types-and-their-semantics. html#kotlin.unit (visited on 04/08/2025).

Marat Akhin and Mikhail Belyaev. Kotlin Type Constraints. Kotlin specification.
JetBrains. URL: https://kotlinlang . org/spec/kotlin- type - constraints .
html#kotlin-type-constraints (visited on 04/11/2025).

Marat Akhin and Mikhail Belyaev. Type Inference. Kotlin specification. JetBrains.
URL: https://kotlinlang.org/spec/type-inference.html#type-inference

(visited on 04/08/2025).

Android. Android KTX. Android documentation. Android. Apr. 11, 2025. URL:
https://developer.android.com/kotlin/ktx (visited on 04/13/2025).

Android. Diagnose and fit ANRs. Android documentation. Android. Aug. 13, 2024.
URL: https://developer . android. com/topic/performance/anrs/diagnose-
and-fix-anrs (visited on 04/13/2025).

Android. LifecycleScope. Android documentation. Android. Feb. 10, 2025. URL:
https://developer.android.com/topic/libraries/architecture/coroutines#
lifecyclescope (visited on 04/13/2025).

Chet Haase. Google 1/O 2019: Empowering developers to build the best experi-
ences on Android + Play. Android developers blog. Google. May 7, 2019. URL:
https://android - developers . googleblog . com/2019/05/google -io-2019 -
empowering-developers-to-build-experiences-on-Android-Play.html (visited

on 04/09/2025).

JetBrains. JetBrains Nullability Annotations. JetBrains documentation. JetBrains.
Jan. 6, 2025. URL: https://www. jetbrains . com/idea/help/nullable - and -
notnull-annotations.html (visited on 04/03/2025).

Jetpack Compose team. A simple composable function. Jetpack Compose documen-
tation. Google. Apr. 1, 2025. URL: https://developer.android.com/develop/ui/
compose/mental-model#simple-example (visited on 04/13/2025).

Jetpack Compose team. Compare Compose and View metrics. Jetpack Compose
documentation. Google. Sept. 19, 2024. URL: https : / / developer . android .
com / develop / ui / compose / migrate / compare - metrics # summary (visited on

04/13/2025).

Jetpack Compose team. State and composition. Jetpack Compose documentation.
Google. Apr. 1, 2025. URL: https : //developer . android . com/develop /ui /
compose/statef#fstate-and-composition (visited on 04/13/2025).

Jetpack Compose team. Thinking in Compose. Jetpack Compose documentation.
Google. Apr. 1, 2025. URL: https : //developer . android . com/develop /ui /
compose/mental-model (visited on 04/13/2025).

Kotlin programming language. Basic Syntax. Program-entry-point. Kotlin documen-
tation. JetBrains. Nov. 6, 2024. URL: https://kotlinlang .org/docs/basic-
syntax.html#program-entry-point (visited on 03/24,/2025).

Kotlin programming language. Basic Syntaz. Functions. Kotlin documentation. Jet-
Brains. Nov. 6, 2024. URL: https://kotlinlang.org/docs/basic-syntax.html#
functions (visited on 04/08/2025).

13

https://kotlinlang.org/spec/built-in-types-and-their-semantics.html#kotlin.unit
https://kotlinlang.org/spec/built-in-types-and-their-semantics.html#kotlin.unit
https://kotlinlang.org/spec/kotlin-type-constraints.html#kotlin-type-constraints
https://kotlinlang.org/spec/kotlin-type-constraints.html#kotlin-type-constraints
https://kotlinlang.org/spec/type-inference.html#type-inference
https://developer.android.com/kotlin/ktx
https://developer.android.com/topic/performance/anrs/diagnose-and-fix-anrs
https://developer.android.com/topic/performance/anrs/diagnose-and-fix-anrs
https://developer.android.com/topic/libraries/architecture/coroutines#lifecyclescope
https://developer.android.com/topic/libraries/architecture/coroutines#lifecyclescope
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://www.jetbrains.com/idea/help/nullable-and-notnull-annotations.html
https://www.jetbrains.com/idea/help/nullable-and-notnull-annotations.html
https://developer.android.com/develop/ui/compose/mental-model#simple-example
https://developer.android.com/develop/ui/compose/mental-model#simple-example
https://developer.android.com/develop/ui/compose/migrate/compare-metrics#summary
https://developer.android.com/develop/ui/compose/migrate/compare-metrics#summary
https://developer.android.com/develop/ui/compose/state#state-and-composition
https://developer.android.com/develop/ui/compose/state#state-and-composition
https://developer.android.com/develop/ui/compose/mental-model
https://developer.android.com/develop/ui/compose/mental-model
https://kotlinlang.org/docs/basic-syntax.html#program-entry-point
https://kotlinlang.org/docs/basic-syntax.html#program-entry-point
https://kotlinlang.org/docs/basic-syntax.html#functions
https://kotlinlang.org/docs/basic-syntax.html#functions

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

Kotlin programming language. Basic Syntax. Variables. Kotlin documentation. Jet-
Brains. Nov. 6, 2024. URL: https://kotlinlang.org/docs/basic-syntax. html#
variables (visited on 04/08/2025).

Kotlin programming language. Basic Types. Kotlin documentation. JetBrains.
Sept. 25, 2024. URL: https://kotlinlang.org/docs/basic-types.html (vis-
ited on 03/29/2025).

Kotlin programming language. Calling Java from Kotlin. JetBrains documentation.
JetBrains. Jan. 21, 2025. URL: https://kotlinlang.org/docs/java-interop.html
(visited on 04/03/2025).

Kotlin programming language. Calling Java from Kotlin. Getters and setters. Jet-
Brains documentation. JetBrains. Jan. 6, 2025. URL: https://kotlinlang.org/
docs/java-interop.html#getters-and-setters (visited on 04/21/2025).

Kotlin programming language. Calling Java from Kotlin. Java synthetic property
references. JetBrains documentation. JetBrains. Jan. 21, 2025. URL: https : //
kotlinlang . org / docs / java - interop . html # java - synthetic - property -
references (visited on 04/03/2025).

Kotlin programming language. Calling Java from Kotlin. Mapped types. Kotlin doc-
umentation. JetBrains. Jan. 21, 2025. URL: https://kotlinlang.org/docs/java-
interop.html#mapped-types (visited on 04/03/2025).

Kotlin programming language. Calling Java from Kotlin. Null-safety and plat-
form types. JetBrains documentation. JetBrains. Jan. 21, 2025. URL: https ://
kotlinlang.org/docs/java-interop.html#null-safety-and-platform-types
(visited on 04/03,/2025).

Kotlin programming language. Calling Java from Kotlin. Notation for platform types.
JetBrains documentation. JetBrains. Jan. 21, 2025. URL: https://kotlinlang .
org /docs / java - interop . html #notation - for - platform - types (visited on
04/03/2025).

Kotlin programming language. Calling Java from Kotlin. Nullability annotations.
JetBrains documentation. JetBrains. Jan. 21, 2025. URL: https://kotlinlang.org/
docs/java-interop.html#nullability-annotations (visited on 04/03/2025).

Kotlin programming language. Calling Java from Kotlin. Java arrays. Kotlin docu-
mentation. JetBrains. Jan. 21, 2025. URL: https://kotlinlang.org/docs/ java-
interop.html#java-arrays (visited on 04/03/2025).

Kotlin programming language. Calling Kotlin from Java. Kotlin documentation. Jet-
Brains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/java-to-kotlin-
interop.html (visited on 04/05/2025).

Kotlin programming language. Calling Kotlin from Java. Properties. Kotlin docu-
mentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/java-
to-kotlin-interop.html#iproperties (visited on 04/05/2025).

Kotlin programming language. Calling Kotlin from Java. Null safety. Kotlin docu-
mentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/java-
to-kotlin-interop.html#null-safety (visited on 04/05/2025).

Kotlin programming language. Calling Kotlin from Java. Instance fields. Kotlin doc-
umentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/java-
to-kotlin-interop.html#instance-fields (visited on 04/05/2025).

14

https://kotlinlang.org/docs/basic-syntax.html#variables
https://kotlinlang.org/docs/basic-syntax.html#variables
https://kotlinlang.org/docs/basic-types.html
https://kotlinlang.org/docs/java-interop.html
https://kotlinlang.org/docs/java-interop.html#getters-and-setters
https://kotlinlang.org/docs/java-interop.html#getters-and-setters
https://kotlinlang.org/docs/java-interop.html#java-synthetic-property-references
https://kotlinlang.org/docs/java-interop.html#java-synthetic-property-references
https://kotlinlang.org/docs/java-interop.html#java-synthetic-property-references
https://kotlinlang.org/docs/java-interop.html#mapped-types
https://kotlinlang.org/docs/java-interop.html#mapped-types
https://kotlinlang.org/docs/java-interop.html#null-safety-and-platform-types
https://kotlinlang.org/docs/java-interop.html#null-safety-and-platform-types
https://kotlinlang.org/docs/java-interop.html#notation-for-platform-types
https://kotlinlang.org/docs/java-interop.html#notation-for-platform-types
https://kotlinlang.org/docs/java-interop.html#nullability-annotations
https://kotlinlang.org/docs/java-interop.html#nullability-annotations
https://kotlinlang.org/docs/java-interop.html#java-arrays
https://kotlinlang.org/docs/java-interop.html#java-arrays
https://kotlinlang.org/docs/java-to-kotlin-interop.html
https://kotlinlang.org/docs/java-to-kotlin-interop.html
https://kotlinlang.org/docs/java-to-kotlin-interop.html#properties
https://kotlinlang.org/docs/java-to-kotlin-interop.html#properties
https://kotlinlang.org/docs/java-to-kotlin-interop.html#null-safety
https://kotlinlang.org/docs/java-to-kotlin-interop.html#null-safety
https://kotlinlang.org/docs/java-to-kotlin-interop.html#instance-fields
https://kotlinlang.org/docs/java-to-kotlin-interop.html#instance-fields

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Kotlin programming language. Calling Kotlin from Java. Static fields. Kotlin docu-
mentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/java-
to-kotlin-interop.html#static-fields (visited on 04/05/2025).

Kotlin programming language. Classes. Kotlin documentation. JetBrains. Sept. 25,
2024. URL: https://kotlinlang.org/docs/classes. html (visited on 04/08/2025).

Kotlin programming language. Classes. Constructors. Kotlin documentation. Jet-
Brains. Sept. 25, 2024. URL: https://kotlinlang . org/docs/classes . html#
constructors (visited on 04/08/2025).

Kotlin programming language. Coroutines are light-weight. Kotlin documentation.
JetBrains. Feb. 16, 2022. URL: https://kotlinlang . org/docs / coroutines -
basics.html#coroutines-are-light-weight (visited on 04/13/2025).

Kotlin programming language. Dispatcher. Kotlin documentation. JetBrains. URL:
https://kotlinlang . org/api/kotlinx . coroutines /kotlinx - coroutines -
core/kotlinx.coroutines/-dispatchers/-i-o.html (visited on 04/13/2025).

Kotlin programming language. Dispatcher. Kotlin documentation. JetBrains. URL:
https://kotlinlang . org/api/kotlinx . coroutines /kotlinx - coroutines -
core/kotlinx.coroutines/-dispatchers/ (visited on 04/13/2025).

Kotlin programming language. FEztensions. Kotlin documentation. JetBrains.
Sept. 25, 2024. URL: https://kotlinlang.org/docs/extensions . html (visited
on 04/12/2025).

Kotlin programming language. Functions. Function-scope. Kotlin documentation.
JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/functions.html#
function-scope (visited on 03/24/2025).

Kotlin programming language. Get started with Kotlin/JVM. Kotlin documentation.
JetBrains. Nov. 14, 2024. URL: https://kotlinlang.org/docs/jvm-get-started.
html (visited on 04/13/2025).

Kotlin programming language. Get started with Kotlin/Wasm and Compose Mul-
tiplatform. Kotlin documentation. JetBrains. Mar. 18, 2025. URL: https : / /
kotlinlang.org/docs/wasm-get-started.html (visited on 04/13/2025).

Kotlin programming language. Interoperability with C. Kotlin documentation. Jet-
Brains. Feb. 11, 2025. URL: https://kotlinlang.org/docs/native-c-interop.
html (visited on 04/13/2025).

Kotlin programming language. Interoperability with Swift/Objective-C. Kotlin docu-
mentation. JetBrains. Feb. 11, 2025. URL: https://kotlinlang.org/docs/native-
objc-interop.html (visited on 04/13/2025).

Kotlin programming language. Introduction to Kotlin Multiplatform. Kotlin doc-
umentation. JetBrains. Dec. 16, 2024. URL: https ://kotlinlang . org/docs/
multiplatform-intro.html (visited on 04/13/2025).

Kotlin programming language. Kotlin for JavaScript. Kotlin documentation. Jet-
Brains. Jan. 17, 2025. URL: https://kotlinlang.org/docs/js-overview.html
(visited on 04/13/2025).

Kotlin programming language. Kotlin Native. Kotlin documentation. JetBrains.
Feb. 13, 2025. URL: https ://kotlinlang . org/docs/native - overview . html
(visited on 04/13,/2025).

15

https://kotlinlang.org/docs/java-to-kotlin-interop.html#static-fields
https://kotlinlang.org/docs/java-to-kotlin-interop.html#static-fields
https://kotlinlang.org/docs/classes.html
https://kotlinlang.org/docs/classes.html#constructors
https://kotlinlang.org/docs/classes.html#constructors
https://kotlinlang.org/docs/coroutines-basics.html#coroutines-are-light-weight
https://kotlinlang.org/docs/coroutines-basics.html#coroutines-are-light-weight
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-i-o.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/-i-o.html
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/
https://kotlinlang.org/api/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/-dispatchers/
https://kotlinlang.org/docs/extensions.html
https://kotlinlang.org/docs/functions.html#function-scope
https://kotlinlang.org/docs/functions.html#function-scope
https://kotlinlang.org/docs/jvm-get-started.html
https://kotlinlang.org/docs/jvm-get-started.html
https://kotlinlang.org/docs/wasm-get-started.html
https://kotlinlang.org/docs/wasm-get-started.html
https://kotlinlang.org/docs/native-c-interop.html
https://kotlinlang.org/docs/native-c-interop.html
https://kotlinlang.org/docs/native-objc-interop.html
https://kotlinlang.org/docs/native-objc-interop.html
https://kotlinlang.org/docs/multiplatform-intro.html
https://kotlinlang.org/docs/multiplatform-intro.html
https://kotlinlang.org/docs/js-overview.html
https://kotlinlang.org/docs/native-overview.html

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Kotlin programming language. Kotlin Standard Library. Kotlin.Unit. Kotlin API
documentation. JetBrains. URL: https://kotlinlang . org/api/core/kotlin-
stdlib/kotlin/-unit/ (visited on 04/08/2025).

Kotlin programming language. Lambdas. Higher-order functions. Kotlin documenta-
tion. JetBrains. Nov. 27, 2024. URL: https://kotlinlang.org/docs/lambdas .
html#higher-order-functions (visited on 04/08/2025).

Kotlin programming language. Null safety. Kotlin documentation. JetBrains.
Sept. 25, 2024. URL: https://kotlinlang.org/docs/null - safety . html (vis-
ited on 04/05/2025).

Kotlin programming language. Null safety. Nullable types and non-nullable types.
Kotlin documentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/
docs/null-safety.html#nullable-types-and-non-nullable-types (visited on
04/05/2025).

Kotlin programming language. Null safety. Check for null with the if conditional.
Kotlin documentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/
docs/null-safety.html#check-for-null-with-the-if-conditional (visited on
04/05/2025).

Kotlin programming language. Null safety. Safe call operator. Kotlin documentation.
JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/null - safety.
html#safe-call-operator (visited on 04/05/2025).

Kotlin programming language. Null safety. Elvis operator. Kotlin documentation.
JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/null -safety .
html#elvis-operator (visited on 04/05/2025).

Kotlin programming language. Null safety. Not-null assertion operator. Kotlin doc-
umentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/null-
safety.html#not-null-assertion-operator (visited on 04/05/2025).

Kotlin programming language. Null safety. Nullable receiver. Kotlin documentation.
JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/null-safety.
html#nullable-receiver (visited on 04/05/2025).

Kotlin programming language. Properties. Declaring properties. Kotlin documenta-
tion. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/properties.
html#declaring-properties (visited on 04/08/2025).

Kotlin programming language. Properties. Getters and setters. Kotlin documenta-
tion. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/docs/properties.
html#getters-and-setters (visited on 04/08/2025).

Kotlin programming language. Strings in Java and Kotlin. String concatenation.
Kotlin documentation. JetBrains. Sept. 25, 2024. URL: https://kotlinlang.org/
docs/java-to-kotlin-idioms-strings.html#concatenate-strings (visited on
04/08/2025).

Kotlin programming language. The basics of Kotlin Multiplatform project structure.
Kotlin documentation. JetBrains. Jan. 10, 2025. URL: https://kotlinlang.org/
docs/multiplatform-discover-project.html (visited on 04/13/2025).

Kotlin programming language. Visibility Modifiers. Kotlin documentation. JetBrains.
Sept. 25, 2024. URL: https://kotlinlang.org/docs/visibility-modifiers.html
(visited on 03/24/2025).

16

https://kotlinlang.org/api/core/kotlin-stdlib/kotlin/-unit/
https://kotlinlang.org/api/core/kotlin-stdlib/kotlin/-unit/
https://kotlinlang.org/docs/lambdas.html#higher-order-functions
https://kotlinlang.org/docs/lambdas.html#higher-order-functions
https://kotlinlang.org/docs/null-safety.html
https://kotlinlang.org/docs/null-safety.html#nullable-types-and-non-nullable-types
https://kotlinlang.org/docs/null-safety.html#nullable-types-and-non-nullable-types
https://kotlinlang.org/docs/null-safety.html#check-for-null-with-the-if-conditional
https://kotlinlang.org/docs/null-safety.html#check-for-null-with-the-if-conditional
https://kotlinlang.org/docs/null-safety.html#safe-call-operator
https://kotlinlang.org/docs/null-safety.html#safe-call-operator
https://kotlinlang.org/docs/null-safety.html#elvis-operator
https://kotlinlang.org/docs/null-safety.html#elvis-operator
https://kotlinlang.org/docs/null-safety.html#not-null-assertion-operator
https://kotlinlang.org/docs/null-safety.html#not-null-assertion-operator
https://kotlinlang.org/docs/null-safety.html#nullable-receiver
https://kotlinlang.org/docs/null-safety.html#nullable-receiver
https://kotlinlang.org/docs/properties.html#declaring-properties
https://kotlinlang.org/docs/properties.html#declaring-properties
https://kotlinlang.org/docs/properties.html#getters-and-setters
https://kotlinlang.org/docs/properties.html#getters-and-setters
https://kotlinlang.org/docs/java-to-kotlin-idioms-strings.html#concatenate-strings
https://kotlinlang.org/docs/java-to-kotlin-idioms-strings.html#concatenate-strings
https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/multiplatform-discover-project.html
https://kotlinlang.org/docs/visibility-modifiers.html

	Introduction
	Basic Syntax
	Program Entry Point and Method Declaration
	Variable Declaration
	Type Inference
	Return Type Declaration
	Everything is an Object

	Classes
	Properties

	String Interpolation
	Extension Functions
	Null Safety
	Null Safety Operators
	Safe Call Operator
	Elvis Operator
	Not-Null Assertion Operator

	Nullable Receiver

	Interoperability
	Call Java in Kotlin
	Create and Access Objects
	Mapped types
	Null Safety with Java
	Java Arrays in Kotlin

	Call Kotlin in Java
	Kotlin Properties in Java
	Kotlin's Null Safety in Java
	Instance Fields

	Multiplatform Development
	Android
	Jetpack Compose
	Android KTX
	Coroutines

	Conclusion

