
Kotlin
Proseminar: Fortgeschrittene Programmierkonzepte

Christian Konersmann, Finn Paul Lippok, Paul Lukas

05.05.2025

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 1 / 27

Was ist Kotlin?

Statisch typisierte und objektorientierte
Programmiersprache.

Basierend auf Java und der JVM mit
vollständiger Interoperabilität zu beiden.

Wichtigste Vorteile gegenüber Java:
Klare und präzise Syntax
Erweiterte Funktionen wie Null Safety
Umfassende Multiplattform-Entwicklungsmöglichkeiten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 2 / 27

Was ist Kotlin?

Statisch typisierte und objektorientierte
Programmiersprache.

Basierend auf Java und der JVM mit
vollständiger Interoperabilität zu beiden.

Wichtigste Vorteile gegenüber Java:
Klare und präzise Syntax
Erweiterte Funktionen wie Null Safety
Umfassende Multiplattform-Entwicklungsmöglichkeiten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 2 / 27

Syntax

1 Main-Methode

2 Variablen-Deklaration

3 Klassen

4 Properties

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 3 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich

Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun

Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public

args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional

Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 4 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 5 / 27

Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 6 / 27

Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

Kotlin

1 class Verkaufsperson () {

2

3

4

5 val name: String

6 private var provision: Double

7 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 6 / 27

Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

Kotlin

1 class Verkaufsperson(

2 name: String ,

3 provision: Double = 0.2

4) {

5 val name: String = name

6 private var provision: Double = provision

7 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 6 / 27

Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

Kotlin

1 class Verkaufsperson(

2 val name: String ,

3 private var provision: Double = 0.2

4) {

5

6

7 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 6 / 27

Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

Kotlin

1 class Verkaufsperson(

2 val name: String ,

3 private var provision: Double = 0.2

4) {}

Ähnlich wie Java-Records, aber flexibler

Nur vererbbar, wenn als open deklariert

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 6 / 27

Java Getter und Setter

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5

6 public Verkaufsperson(String name , double

provision) {...}

7

8 public String getName () {...}

9

10

11 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 7 / 27

Java Getter und Setter

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4 private int umsatz;

5

6 public Verkaufsperson(String name , double

provision) {...}

7

8 public String getName () {...}

9 public int getUmsatz () {...}

10 private void setUmsatz(int umsatz) {...}

11 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 7 / 27

Properties

Kotlin: Properties

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5

6

7

8

9

10

11 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 8 / 27

Properties

Kotlin: Properties Zugriffsmodifikator

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set

6

7

8

9

10

11 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 8 / 27

Properties

Kotlin: Benutzerdefinierte Zugriffsmethoden

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set(value) {

6 if (value < 0)

7 throw IllegalArgumentException("Umsatz␣muss␣

positiv␣sein")

8 field = value

9 }

10 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 8 / 27

Properties

Kotlin: Benutzerdefinierte Zugriffsmethoden

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set(value) {

6 if (value < 0)

7 throw IllegalArgumentException("Umsatz␣muss␣

positiv␣sein")

8 field = value

9 }

10 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 8 / 27

Null Safety

5 Motivation

6 Safe call Operator

7 Elvis Operator

8 Not-null assertion Operator

9 Nullable Receiver Funktionen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 9 / 27

Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 10 / 27

Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 10 / 27

Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 10 / 27

Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 10 / 27

Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 10 / 27

Null Safety

1 var a : String = "a␣ist␣non -nullable"

2 var b : String? = "b␣ist␣nullable"

Unterscheidung zwischen nullable und non-nullable types

Programmierer muss Null safety gewährleisten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 11 / 27

Null Safety

1 var a : String = "a␣ist␣non -nullable"

2 var b : String? = "b␣ist␣nullable"

Unterscheidung zwischen nullable und non-nullable types

Programmierer muss Null safety gewährleisten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 11 / 27

Null Safety

1 var a : String = "a␣ist␣non -nullable"

2 var b : String? = "b␣ist␣nullable"

Unterscheidung zwischen nullable und non-nullable types

Programmierer muss Null safety gewährleisten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 11 / 27

Null Safety: Safe call Operator

in Java

1 private final Verkaufsperson vorgesetzter;

2

3 public void printVorgesetzter () {

4 if (vorgesetzter == null)

System.out.println(null);

5 else System.out.println(vorgesetzter.name);

6 }

in Kotlin

1 val vorgesetzter: Verkaufsperson? = null

2

3 fun printVorgesetzter () {

4 println(vorgesetzter ?.name)

5 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 12 / 27

Null Safety: Safe call Operator

in Java

1 private final Verkaufsperson vorgesetzter;

2

3 public void printVorgesetzter () {

4 if (vorgesetzter == null)

System.out.println(null);

5 else System.out.println(vorgesetzter.name);

6 }

in Kotlin

1 val vorgesetzter: Verkaufsperson? = null

2

3 fun printVorgesetzter () {

4 println(vorgesetzter ?.name)

5 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 12 / 27

Null Safety: Safe call Operator

Verkettung des Operators

1 var name: String? = vorgesetzter ?. vorgesetzter ?.name

Zuweisungen mit dem Operator

1 vorgesetzter ?. vorgesetzter ?. provision = 0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 13 / 27

Null Safety: Safe call Operator

Verkettung des Operators

1 var name: String? = vorgesetzter ?. vorgesetzter ?.name

Zuweisungen mit dem Operator

1 vorgesetzter ?. vorgesetzter ?. provision = 0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 13 / 27

Null Safety: Elvis Operator

Weiterentwicklung des Safe call Operators

Ermöglicht setzen von Default-Werten anstelle null

1 public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein␣Vorgesetzter");

4 else System.out.println(vorgesetzter.name);

5 }

1 fun printVorgesetzter () {

2 println(vorgesetzter ?.name ?: "Kein␣Vorgesetzter")

3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 14 / 27

Null Safety: Elvis Operator

Weiterentwicklung des Safe call Operators

Ermöglicht setzen von Default-Werten anstelle null

1 public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein␣Vorgesetzter");

4 else System.out.println(vorgesetzter.name);

5 }

1 fun printVorgesetzter () {

2 println(vorgesetzter ?.name ?: "Kein␣Vorgesetzter")

3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 14 / 27

Null Safety: Elvis Operator

Weiterentwicklung des Safe call Operators

Ermöglicht setzen von Default-Werten anstelle null

1 public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein␣Vorgesetzter");

4 else System.out.println(vorgesetzter.name);

5 }

1 fun printVorgesetzter () {

2 println(vorgesetzter ?.name ?: "Kein␣Vorgesetzter")

3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 14 / 27

Null Safety: Elvis Operator

Weiterentwicklung des Safe call Operators

Ermöglicht setzen von Default-Werten anstelle null

1 public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein␣Vorgesetzter");

4 else System.out.println(vorgesetzter.name);

5 }

1 fun printVorgesetzter () {

2 println(vorgesetzter ?.name ?: "Kein␣Vorgesetzter")

3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 14 / 27

Null Safety: Not-null assertion Operator

1 val a: String? = null

2 var b: String = a!!

Kann zu NullPointerExceptions führen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 15 / 27

Null Safety: Not-null assertion Operator

1 val a: String? = null

2 var b: String = a!!

Kann zu NullPointerExceptions führen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 15 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 / 27

Interoperabilität

Java in Kotlin benutzen

10 Zugriff auf Klassen und Instanzen

11 Mapped Types

12 Null safety mit Java

Kotlin in Java benutzen

13 Kotlin Properties in Java

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 17 / 27

Interoperabilität

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5 public Verkaufsperson(String name , double

provision) {...}

6

7 public String getName () {...}

8 public double getProvision () {...}

9 public void setProvision(double provision) {...}

10 }

1 var carl = Verkaufsperson("Carl␣Mueller", 0.1)

2 println(carl.name)

3 carl.provision = 0.2

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 18 / 27

Interoperabilität

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5 public Verkaufsperson(String name , double

provision) {...}

6

7 public String getName () {...}

8 public double getProvision () {...}

9 public void setProvision(double provision) {...}

10 }

1 var carl = Verkaufsperson("Carl␣Mueller", 0.1)

2 println(carl.name)

3 carl.provision = 0.2

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 18 / 27

Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27

Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27

Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27

Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27

Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27

Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 20 / 27

Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 20 / 27

Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 20 / 27

Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 20 / 27

Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 20 / 27

Interoperabilität: Kotlin Properties in Java

1 class Verkaufsperson () {

2 var name: String

3 }

1 public class Verkaufsperson {

2 private String name;

3

4 public String getName () {

5 return name;

6 }

7

8 public void setName(String name) {

9 this.name = name;

10 }

11 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 21 / 27

Interoperabilität: Kotlin Properties in Java

1 class Verkaufsperson () {

2 var name: String

3 }

1 public class Verkaufsperson {

2 private String name;

3

4 public String getName () {

5 return name;

6 }

7

8 public void setName(String name) {

9 this.name = name;

10 }

11 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 21 / 27

Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 22 / 27

Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 22 / 27

Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 22 / 27

Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 22 / 27

Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 22 / 27

Android

14 Jetpack Compose

15 Coroutines

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 23 / 27

Android: Jetpack compose

@composable

@composable

@composable

States

Home

HomeProfil
Farbe:
Grau
Farbe:

Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 / 27

Android: Jetpack compose

@composable

@composable

@composable

States

Home

Profil

Farbe:
Grau

Farbe:
Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 / 27

Android: Jetpack compose

@composable

@composable

@composable

States

Home

Profil
Farbe:
Grau

Farbe:
Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 / 27

Android: Jetpack compose

@composable

@composable

@composable

States

Home

Profil
Farbe:
Grau

Farbe:
Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 / 27

Android: Jetpack compose

@composable

@composable

@composable

States

Home

Profil

Farbe:
Grau
Farbe:

Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 / 27

Android: Coroutines

multithreading

Threads ThreadsMain-Thread

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 25 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack
launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server ping

fun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server ping

fun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack

launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 / 27

Zusammenfassung

Moderne Programmiersprache mit präziser Syntax
public static void main(String[] args) ⇒ fun main()

Innovative Features wie Null-Sicherheit
verkaufsperson?.vorgesetzter ?: "Kein␣Vorgesetzter"

Nahtlose Interoperabilität mit Java

↔

Multiplattform-Entwicklung (Android)

Common Intermediate Target

Aussicht:

Erweiterte Features: Smart Casts, Delegation, Destructuring . . .

Unterstützung funktionaler Programmierparadigmen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 27 / 27

Zusammenfassung

Moderne Programmiersprache mit präziser Syntax
public static void main(String[] args) ⇒ fun main()

Innovative Features wie Null-Sicherheit
verkaufsperson?.vorgesetzter ?: "Kein␣Vorgesetzter"

Nahtlose Interoperabilität mit Java

↔

Multiplattform-Entwicklung (Android)

Common Intermediate Target

Aussicht:

Erweiterte Features: Smart Casts, Delegation, Destructuring . . .

Unterstützung funktionaler Programmierparadigmen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 27 / 27

	Main-Methode
	Variablen-Deklaration
	Klassen
	Properties
	Motivation
	Safe call Operator
	Elvis Operator
	Not-null assertion Operator
	Nullable Receiver Funktionen
	Zugriff auf Klassen und Instanzen
	Mapped Types
	Null safety mit Java
	Kotlin Properties in Java
	Jetpack Compose
	Coroutines

