Kotlin

Proseminar: Fortgeschrittene Programmierkonzepte

Christian Konersmann, Finn Paul Lippok, Paul Lukas

05.05.2025

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Was ist Kotlin?

o Statisch typisierte und objektorientierte
Programmiersprache.

o Basierend auf Java und der JVM mit
vollstandiger Interoperabilitat zu beiden.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Was ist Kotlin?

o Statisch typisierte und objektorientierte
Programmiersprache.

o Basierend auf Java und der JVM mit
vollstandiger Interoperabilitat zu beiden.

o Wichtigste Vorteile gegeniiber Java:
o Klare und prazise Syntax
o Erweiterte Funktionen wie Null Safety
o Umfassende Multiplattform-Entwicklungsmoglichkeiten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



© Main-Methode

@ Variablen-Deklaration

© Klassen

@ Properties

C. Konersmann, F. Lippok, P. Lukas Kotlin

05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")
3 |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")
3 |}

o Klassendeklaration: nicht erforderlich

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")
3 |}

o Klassendeklaration: nicht erforderlich
@ Schlisselwort zur Funktionsdeklaration: fun

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")
3 |}

o Klassendeklaration: nicht erforderlich
@ Schlisselwort zur Funktionsdeklaration: fun
o Standardzugriffsmodifikator: public

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")

Klassendeklaration: nicht erforderlich
Schliisselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Main-Methode

Java Main-Methode

1 |public class Main {

2 public static void main(String[] args) {
3 System.out.println("Hello,_ World!");
4 }

5 [}

Kotlin Main-Methode

1 | fun main() {
2 println("Hello,_ World!")

Klassendeklaration: nicht erforderlich
Schliisselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional

Semikolons: nicht notwendig

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

o var firr veranderliche Variablen, val fir unveranderliche Variablen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

o var firr veranderliche Variablen, val fir unveranderliche Variablen

o Typangabe nach dem Variablennamen mit Doppelpunkt

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

o var fir veranderliche Variablen, val fiir unveranderliche Variablen
o Typangabe nach dem Variablennamen mit Doppelpunkt
o Keine primitiven Typen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

o var fir veranderliche Variablen, val fiir unveranderliche Variablen
o Typangabe nach dem Variablennamen mit Doppelpunkt
o Keine primitiven Typen

o Funktionen sind Objekte = Funktionale Programmierung moglich

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Variablen-Deklaration

Java Kotlin

1 |int a = 5; var a: Int =5
2 |final String b = "Hallo"; val b: String = "Hallo"

o var fir veranderliche Variablen, val fiir unveranderliche Variablen
o Typangabe nach dem Variablennamen mit Doppelpunkt
o Keine primitiven Typen

o Funktionen sind Objekte = Funktionale Programmierung moglich

Typinferenz wird unterstiitzt:
@ Der Compiler leitet den Typ aus dem initialisierten Wert ab.

o Beispiel: var a = 5 ist auch moglich.

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Klassen

Java
1 |public class Verkaufsperson {
2 public final String name;
3 private double provision;
4
5 public Verkaufsperson (String name, double
provision) {...}
o |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Klassen

Java
1 |public class Verkaufsperson {
2 public final String name;
3 private double provision;
4
5 public Verkaufsperson (String name, double
provision) {...}
6 |}
Kotlin

1 |class Verkaufsperson () {

5 val name: String
6 private var provision: Double
7|}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Klassen

Java
1 |public class Verkaufsperson {
2 public final String name;
3 private double provision;
4
5 public Verkaufsperson (String name, double
provision) {...}
6 |}
Kotlin
1 |class Verkaufsperson(
2 name: String,
3 provision: Double = 0.2
) Ao
5 val name: String = name
6 private var provision: Double = provision
7}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Klassen

Java
1 |public class Verkaufsperson {
2 public final String name;
3 private double provision;
4
5 public Verkaufsperson (String name, double
provision) {...}
6 |}
Kotlin
1 |class Verkaufsperson(
2 val name: String,
3 private var provision: Double = 0.2
) Ao
5
6
7}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Klassen

Java
1 |public class Verkaufsperson {
2 public final String name;
3 private double provision;
4
5 public Verkaufsperson (String name, double
provision) {...}
6 |}
Kotlin
1 |class Verkaufsperson(
2 val name: String,
3 private var provision: Double = 0.2
o) {2}

o Ahnlich wie Java-Records, aber flexibler

@ Nur vererbbar, wenn als open deklariert

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Java Getter und Setter

1 |public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5

6 public Verkaufsperson(String name, double

provision) {...}

8 public String getName() {...}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Java Getter und Setter

1 |public class Verkaufsperson {

2 private final String name;

3 private double provision;

4 private int umsatz;

5

6 public Verkaufsperson(String name, double
provision) {...}

8 public String getName() {...}
9 public int getUmsatz () {...}
10 private void setUmsatz(int umsatz) {...}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Kotlin: Properties

1 |class Verkaufsperson(val name: String,
2 private var provision: Double = 0.2) {
3

4 var umsatz : Int = 0

5

6

7

8

9

10

11|}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Kotlin: Properties Zugriffsmodifikator

1 |class Verkaufsperson(val name: String,
2 private var provision: Double = 0.2) {
3

4 var umsatz : Int = 0

5 private set

6

7

8

9

10

11|}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Kotlin: Benutzerdefinierte Zugriffsmethoden

1 |class Verkaufsperson(val name: String,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set(value) {

6 if (value < 0)

7 throw IllegalArgumentException("Umsatzumussu
positivsein")

8 field = value

0 }

0 |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Kotlin: Benutzerdefinierte Zugriffsmethoden

1 |class Verkaufsperson(val name: String,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set(value) {

6 if (value < 0)

7 throw IllegalArgumentException(“Umsatzumussu
positivsein")

8 field = value

0 }

0 |}

o Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

© Motivation

@ Safe call Operator

@ Elvis Operator

© Not-null assertion Operator

© Nullable Receiver Funktionen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

Motivation: Null Safety

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

Motivation: Null Safety

Java Beispiel

1 | Verkaufsperson person = null;
> |System.out.println(person.name) ;

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

Motivation: Null Safety

Java Beispiel

1 | Verkaufsperson person = null;
> |System.out.println(person.name) ;

o Code wirft java.lang.NullPointerException

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

Motivation: Null Safety

Java Beispiel

1 | Verkaufsperson person = null;
> |System.out.println(person.name) ;

o Code wirft java.lang.NullPointerException

@ Kann zu Programmabbruch fiihren oder weitere Fehler nach sich
ziehen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

Motivation: Null Safety

Java Beispiel

1 | Verkaufsperson person = null;
> |System.out.println(person.name) ;

o Code wirft java.lang.NullPointerException

@ Kann zu Programmabbruch fiihren oder weitere Fehler nach sich
ziehen

o Konzept verhindert NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

1 |var a : String = "agistynon-nullable"
2 |var b : String? = "byistynullable"

Kotlin 05.05.2025



Null Safety

1 |var a : String = "agistynon-nullable"
2 |var b : String? = "byistynullable"

@ Unterscheidung zwischen nullable und non-nullable types

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety

1 |var a : String = "agistynon-nullable"
2 |var b : String? = "byistynullable"

@ Unterscheidung zwischen nullable und non-nullable types

@ Programmierer muss Null safety gewahrleisten

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Safe call Operator

in Java

1 |private final Verkaufsperson vorgesetzter;

3 |public void printVorgesetzter () {

4 if (vorgesetzter == null)
System.out.println(null);

5 else System.out.println(vorgesetzter.name);

o |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Safe call Operator

in Java

1 |private final Verkaufsperson vorgesetzter;

3 |public void printVorgesetzter () {

4 if (vorgesetzter == null)
System.out.println(null);
5 else System.out.println(vorgesetzter.name);
e
in Kotlin
1 |val vorgesetzter: Verkaufsperson? = null

3 |fun printVorgesetzter () {
4 println(vorgesetzter?.name)

5 |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Safe call Operator

Verkettung des Operators

1 |var name: String? = vorgesetzter?.vorgesetzter?.name

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Safe call Operator

Verkettung des Operators

1 |var name: String? = vorgesetzter?.vorgesetzter?.name

Zuweisungen mit dem Operator

1 |vorgesetzter?.vorgesetzter?.provision = 0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Elvis Operator

@ Weiterentwicklung des Safe call Operators

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 14 /27



Null Safety: Elvis Operator

@ Weiterentwicklung des Safe call Operators

o Ermoglicht setzen von Default-Werten anstelle null

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Elvis Operator

@ Weiterentwicklung des Safe call Operators

o Ermoglicht setzen von Default-Werten anstelle null

1 |public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein, Vorgesetzter");
4 else System.out.println(vorgesetzter.name);
5 3

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Elvis Operator

@ Weiterentwicklung des Safe call Operators

o Ermoglicht setzen von Default-Werten anstelle null

1 |public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein, Vorgesetzter");
4 else System.out.println(vorgesetzter.name);
5 3

1 |fun printVorgesetzter () {
2 println(vorgesetzter?.name 7: "Kein,Vorgesetzter")

3 |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Not-null assertion Operator

1 |val a: String? = null
2 |var b: String = al!

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Not-null assertion Operator

1 |val a: String? = null
2 |var b: String = al!

@ Kann zu NullPointerExceptions fiihren

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 16 /27



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden

o Erlaubt auch Methodenaufruf auf nullable types

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden
o Erlaubt auch Methodenaufruf auf nullable types
@ Null Werte werden innerhalb der Methode behandelt

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden
o Erlaubt auch Methodenaufruf auf nullable types
@ Null Werte werden innerhalb der Methode behandelt

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden
o Erlaubt auch Methodenaufruf auf nullable types
@ Null Werte werden innerhalb der Methode behandelt

1 |fun Verkaufsperson?.print () {

2 if (this == null) return println("Diese Person
existiert nicht")

3 return println("$name: $provision Anteil")

4|

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Null Safety: Nullable Receiver

@ Funktionen konnen extern deklariert werden
o Erlaubt auch Methodenaufruf auf nullable types
@ Null Werte werden innerhalb der Methode behandelt

1 |fun Verkaufsperson?.print () {

2 if (this == null) return println("Diese Person
existiert nicht")

3 return println("$name: $provision Anteil")

4|

1 |var sales: Verkaufsperson? = null

> |sales.print ()

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat

Java in Kotlin benutzen

@ Zugriff auf Klassen und Instanzen

@ Mapped Types

@ Null safety mit Java

Kotlin in Java benutzen

@® Kotlin Properties in Java

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 17 /27



Interoperabilitat

1 |public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5 public Verkaufsperson(String name, double
provision) {...}

7 public String getName() {...}
8 public double getProvision() {...}
9 public void setProvision(double provision) {...}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat

1 |public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5 public Verkaufsperson(String name, double
provision) {...}

7 public String getName() {...}
8 public double getProvision() {...}

9 public void setProvision(double provision) {...}
0 [}

1 |var carl = Verkaufsperson("Carl Mueller", 0.1)

> |println(carl.name)

3 |carl.provision = 0.2

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Mapped Types

@ Normalerweise werden die java-Typen iibernommen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 /27



Interoperabilitat: Mapped Types

@ Normalerweise werden die java-Typen iibernommen

@ Manche haben einen zugehorige Kotlin Typ

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Mapped Types

@ Normalerweise werden die java-Typen iibernommen

@ Manche haben einen zugehorige Kotlin Typ

@ java.lang.0Object = kotlin.Any!

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Mapped Types

Normalerweise werden die java-Typen libernommen

Manche haben einen zugehorige Kotlin Typ

java.lang.0bject = kotlin.Any!

Primitiver Typ int = kotlin.Int

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Mapped Types

Normalerweise werden die java-Typen libernommen

Manche haben einen zugehorige Kotlin Typ

java.lang.0bject = kotlin.Any!

Primitiver Typ int = kotlin.Int

java.lang.Integer = kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Null safety mit Java

1 |public Verkaufsperson erstellePerson() {
2 return null;

3 |}

05.05.2025

C. Konersmann, F. Lippok, P. Lukas Kotlin



Interoperabilitat: Null safety mit Java

1 |public Verkaufsperson erstellePerson() {

2 return null;
s |}
1 |val person: Verkaufsperson = erstellePerson ()

> |println (person.name)

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Null safety mit Java

1 |public Verkaufsperson erstellePerson() {

2 return null;
s |}
1 |val person: Verkaufsperson = erstellePerson ()

> |println (person.name)

@ haben spezial-Typ: platform type

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Null safety mit Java

1 |public Verkaufsperson erstellePerson() {

2 return null;
s |}
1 |val person: Verkaufsperson = erstellePerson ()

> |println (person.name)

@ haben spezial-Typ: platform type
o gelockerte Regeln beziiglich Null safety

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Null safety mit Java

1 |public Verkaufsperson erstellePerson() {

2 return null;
s |}
1 |val person: Verkaufsperson = erstellePerson ()

> |println (person.name)

@ haben spezial-Typ: platform type
o gelockerte Regeln beziiglich Null safety

o anfalliger fiir NullPointerExceptions

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Interoperabilitat: Kotlin Properties in Java

1 |class Verkaufsperson () {
2 var name: String

3 |}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 21/27



Interoperabilitat: Kotlin Properties in Java

1 |class Verkaufsperson () {
2 var name: String

3 |}

1 |public class Verkaufsperson {
private String name;

N

3
4 public String getName () {

5 return name;

6 }

7

8 public void setName(String name) {
9 this.name = name;

10 }

11|}

C. Konersmann, F. Lippok, P. Lukas Kotlin

05.05.2025




Multiplatform Entwicklung

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Multiplatform Entwicklung
Common Source Set -

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Multiplatform Entwicklung

Common Source Set

Intermediate Source Sets

jvmMain ’ ‘ jsMain ’ ‘ nativeMain

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Multiplatform Entwicklung

g
Common Source Set

\

~

commonMain

J

Intermediate Source Set/

NS

jvmMain ’ jsMain ‘ nativeMain ’
Targets/ \
androidMain ‘ iosMain ’

C. Konersmann, F. Lippok, P. Lukas

Kotlin

05.05.2025



Multiplatform Entwicklung

Common Source Set

Intermediate Source Set/

commonMain

expected

\ expected/actual

jvmMain ’ jsMain ‘ nativeMain
Targets / \actual
androidMain ‘ iosMain ’

C. Konersmann, F. Lippok, P. Lukas

Kotlin

05.05.2025



@ Jetpack Compose

@ Coroutines

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Jetpack compose

States

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Jetpack compose

States

Farbe:

Home
Grau

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 /27



Android: Jetpack compose

States

Farbe:

Home™) |~ . Gelb

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 /27



Android: Jetpack compose

States

Farbe:

Home™) |~ . Gelb

Scroll:
0.8

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 /27



Android: Jetpack compose

States

Profil

Scroll:
0.0

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 24 /27



Android: Coroutines

multithreading

Threads Main-Thread Threads

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread

Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 26 /27



Android: Coroutines

Thread
1 |new Fiber<Void>(() -> {
2 //coroutine
3 return null;

4 | }) .start () ;

1 |launch {
2 //coroutine

3 [}

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack

1| suspend fun pingServer () {
2 //ping Server
3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

fun3 - Server ping

Stack

1| suspend fun pingServer () {
2 //ping Server
3 }

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Android: Coroutines

Thread Thread

Stack Stack

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Zusammenfassung

o Moderne Programmiersprache mit praziser Syntax
public static void main(String[] args) = fun main()

@ Innovative Features wie Null-Sicherheit
verkaufsperson?.vorgesetzter ?: "Kein Vorgesetzter"

@ Nahtlose Interoperabilitat mit Java

DUMMY o DUMMY

o Multiplattform-Entwicklung (Android)

[“Common intermediate]  Target |

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



Zusammenfassung

o Moderne Programmiersprache mit praziser Syntax
public static void main(String[] args) = fun main()

@ Innovative Features wie Null-Sicherheit
verkaufsperson?.vorgesetzter ?: "Kein Vorgesetzter"

@ Nahtlose Interoperabilitat mit Java

DUMMY o DUMMY

o Multiplattform-Entwicklung (Android)

[“Common intermediate]  Target |

Aussicht:

o Erweiterte Features: Smart Casts, Delegation, Destructuring ...

o Unterstiitzung funktionaler Programmierparadigmen

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025



	Main-Methode
	Variablen-Deklaration
	Klassen
	Properties
	Motivation
	Safe call Operator
	Elvis Operator
	Not-null assertion Operator
	Nullable Receiver Funktionen
	Zugriff auf Klassen und Instanzen
	Mapped Types
	Null safety mit Java
	Kotlin Properties in Java
	Jetpack Compose
	Coroutines

