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Was ist Kotlin?

Statisch typisierte und objektorientierte
Programmiersprache.

Basierend auf Java und der JVM mit
vollständiger Interoperabilität zu beiden.

Wichtigste Vorteile gegenüber Java:
Klare und präzise Syntax
Erweiterte Funktionen wie Null Safety
Umfassende Multiplattform-Entwicklungsmöglichkeiten
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Syntax

1 Main-Methode

2 Variablen-Deklaration

3 Klassen

4 Properties
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Main-Methode

Java Main-Methode

1 public class Main {

2 public static void main(String [] args) {

3 System.out.println("Hello ,␣World!");

4 }

5 }

Kotlin Main-Methode

1 fun main() {

2 println("Hello ,␣World!")

3 }

Klassendeklaration: nicht erforderlich
Schlüsselwort zur Funktionsdeklaration: fun
Standardzugriffsmodifikator: public
args-Parameter: optional
Semikolons: nicht notwendig
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Variablen-Deklaration

Java

1 int a = 5;

2 final String b = "Hallo";

Kotlin

var a: Int = 5

val b: String = "Hallo"

var für veränderliche Variablen, val für unveränderliche Variablen

Typangabe nach dem Variablennamen mit Doppelpunkt

Keine primitiven Typen

Funktionen sind Objekte ⇒ Funktionale Programmierung möglich

Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.
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Typinferenz wird unterstützt:

Der Compiler leitet den Typ aus dem initialisierten Wert ab.

Beispiel: var a = 5 ist auch möglich.
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Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }
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Klassen
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4

5 public Verkaufsperson (String name , double
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6 }

Kotlin
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Klassen

Java

1 public class Verkaufsperson {

2 public final String name;

3 private double provision;

4

5 public Verkaufsperson (String name , double

provision) {...}

6 }

Kotlin

1 class Verkaufsperson(

2 val name: String ,

3 private var provision: Double = 0.2

4 ) {}

Ähnlich wie Java-Records, aber flexibler

Nur vererbbar, wenn als open deklariert
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Java Getter und Setter

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5

6 public Verkaufsperson(String name , double

provision) {...}

7

8 public String getName () {...}

9

10

11 }
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Java Getter und Setter

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4 private int umsatz;

5

6 public Verkaufsperson(String name , double

provision) {...}

7

8 public String getName () {...}

9 public int getUmsatz () {...}

10 private void setUmsatz(int umsatz) {...}

11 }
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Properties

Kotlin: Properties

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5

6

7

8

9

10

11 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
IllegalArgumentException
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Properties

Kotlin: Properties Zugriffsmodifikator
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3

4 var umsatz : Int = 0

5 private set

6

7

8

9

10

11 }
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Properties

Kotlin: Benutzerdefinierte Zugriffsmethoden

1 class Verkaufsperson(val name: String ,

2 private var provision: Double = 0.2) {

3

4 var umsatz : Int = 0

5 private set(value) {

6 if (value < 0)

7 throw IllegalArgumentException("Umsatz␣muss␣

positiv␣sein")

8 field = value

9 }

10 }

Punktnotation ruft automatisch Setter/Getter auf.
Beispiel: verkaufsperson.umsatz = -1 wirft eine
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Null Safety

5 Motivation

6 Safe call Operator

7 Elvis Operator

8 Not-null assertion Operator

9 Nullable Receiver Funktionen
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Null Safety

Motivation: Null Safety

Java Beispiel

1 Verkaufsperson person = null;

2 System.out.println(person.name);

Code wirft java.lang.NullPointerException

Kann zu Programmabbruch führen oder weitere Fehler nach sich
ziehen

Konzept verhindert NullPointerExceptions
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Null Safety

1 var a : String = "a␣ist␣non -nullable"

2 var b : String? = "b␣ist␣nullable"

Unterscheidung zwischen nullable und non-nullable types

Programmierer muss Null safety gewährleisten
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C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 11 / 27



Null Safety: Safe call Operator

in Java

1 private final Verkaufsperson vorgesetzter;

2

3 public void printVorgesetzter () {

4 if (vorgesetzter == null)

System.out.println(null);

5 else System.out.println(vorgesetzter.name);

6 }

in Kotlin

1 val vorgesetzter: Verkaufsperson? = null

2

3 fun printVorgesetzter () {

4 println(vorgesetzter ?.name)

5 }
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Null Safety: Safe call Operator

Verkettung des Operators

1 var name: String? = vorgesetzter ?. vorgesetzter ?.name

Zuweisungen mit dem Operator

1 vorgesetzter ?. vorgesetzter ?. provision = 0.0
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Null Safety: Elvis Operator

Weiterentwicklung des Safe call Operators

Ermöglicht setzen von Default-Werten anstelle null

1 public void printVorgesetzter () {

2 if (vorgesetzter == null)

3 System.out.println("Kein␣Vorgesetzter");

4 else System.out.println(vorgesetzter.name);

5 }

1 fun printVorgesetzter () {

2 println(vorgesetzter ?.name ?: "Kein␣Vorgesetzter")

3 }
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Null Safety: Not-null assertion Operator

1 val a: String? = null

2 var b: String = a!!

Kann zu NullPointerExceptions führen
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Null Safety: Nullable Receiver

Funktionen können extern deklariert werden

Erlaubt auch Methodenaufruf auf nullable types

Null Werte werden innerhalb der Methode behandelt

1 fun Verkaufsperson ?. print() {

2 if (this == null) return println("Diese␣Person␣

existiert␣nicht")

3 return println("$name:␣$provision␣Anteil")
4 }

1 var sales: Verkaufsperson? = null

2 sales.print()
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Interoperabilität

Java in Kotlin benutzen

10 Zugriff auf Klassen und Instanzen

11 Mapped Types

12 Null safety mit Java

Kotlin in Java benutzen

13 Kotlin Properties in Java
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Interoperabilität

1 public class Verkaufsperson {

2 private final String name;

3 private double provision;

4

5 public Verkaufsperson(String name , double

provision) {...}

6

7 public String getName () {...}

8 public double getProvision () {...}

9 public void setProvision(double provision) {...}

10 }

1 var carl = Verkaufsperson("Carl␣Mueller", 0.1)

2 println(carl.name)

3 carl.provision = 0.2
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Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27



Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27



Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27



Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27



Interoperabilität: Mapped Types

Normalerweise werden die java-Typen übernommen

Manche haben einen zugehörige Kotlin Typ

java.lang.Object ⇒ kotlin.Any!

Primitiver Typ int ⇒ kotlin.Int

java.lang.Integer ⇒ kotlin.Int?

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 19 / 27



Interoperabilität: Null safety mit Java

1 public Verkaufsperson erstellePerson () {

2 return null;

3 }

1 val person: Verkaufsperson = erstellePerson ()

2 println(person.name)

haben spezial-Typ: platform type

gelockerte Regeln bezüglich Null safety

anfälliger für NullPointerExceptions
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Interoperabilität: Kotlin Properties in Java

1 class Verkaufsperson () {

2 var name: String

3 }

1 public class Verkaufsperson {

2 private String name;

3

4 public String getName () {

5 return name;

6 }

7

8 public void setName(String name) {

9 this.name = name;

10 }

11 }
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Multiplatform Entwicklung

Common Source Set commonMain

Intermediate Source Sets

jvmMain jsMain nativeMain

Targets

androidMain iosMain

expected

expected/actual

actual
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Android

14 Jetpack Compose

15 Coroutines

C. Konersmann, F. Lippok, P. Lukas Kotlin 05.05.2025 23 / 27



Android: Jetpack compose

@composable

@composable

@composable

States

Home

HomeProfil
Farbe:
Grau
Farbe:

Grau Gelb

Scroll:
0.8

Farbe:
Lila

Scroll:
0.0
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Android: Coroutines

multithreading

Threads ThreadsMain-Thread
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Android: Coroutines

1 launch {

2 // coroutine

3 }

1 suspend fun pingServer () {

2 //ping Server

3 }

1 new Fiber <Void >(() -> {

2 // coroutine

3 return null;

4 }).start ();

Thread

Stack

Main

Thread

Stack
launch Coroutine

Coroutine

fun1 - Verkaufsperson Name

fun2 - Server ip finden

fun3 - Server pingfun3 - Server ping

Coroutine

Coroutine:
Variablen: Name,Ip
State: 1
Path: fun1-fun2-fun3

Heap

fun3 - Server ping

fun2 - Server ip finden

fun1 - Verkaufsperson Name

fun4 - update UI
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Zusammenfassung

Moderne Programmiersprache mit präziser Syntax
public static void main(String[] args) ⇒ fun main()

Innovative Features wie Null-Sicherheit
verkaufsperson?.vorgesetzter ?: "Kein␣Vorgesetzter"

Nahtlose Interoperabilität mit Java

↔

Multiplattform-Entwicklung (Android)

Common Intermediate Target

Aussicht:

Erweiterte Features: Smart Casts, Delegation, Destructuring . . .

Unterstützung funktionaler Programmierparadigmen
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